High field breakdown characteristics of carbon nanotube thin film transistors.

نویسندگان

  • Man Prakash Gupta
  • Ashkan Behnam
  • Feifei Lian
  • David Estrada
  • Eric Pop
  • Satish Kumar
چکیده

The high field properties of carbon nanotube (CNT) network thin film transistors (CN-TFTs) are important for their practical operation, and for understanding their reliability. Using a combination of experimental and computational techniques we show how the channel geometry (length L(C) and width W(C)) and network morphology (average CNT length L(t) and alignment angle distribution θ) affect heat dissipation and high field breakdown in such devices. The results suggest that when WC ≥ L(t), the breakdown voltage remains independent of W(C) but varies linearly with L(C). The breakdown power varies almost linearly with both W(C) and L(C) when WC >> L(t). We also find that the breakdown power is more susceptible to the variability in the network morphology compared to the breakdown voltage. The analysis offers new insight into the tunable heat dissipation and thermal reliability of CN-TFTs, which can be significantly improved through optimization of the network morphology and device geometry.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liquid-crystalline processing of highly oriented carbon nanotube arrays for thin-film transistors.

We introduce a simple solution-based method for the fabrication of highly oriented carbon nanotube (CNT) arrays to be used for thin-film transistors. We exploit the liquid-crystalline behavior of a CNT solution near the receding contact line during tilted-drop casting and produced long-range nematic-like ordering of carbon nanotube stripes caused by confined micropatterned geometry. We further ...

متن کامل

Carbon nanotube thin film transistors for biomedical applications

CARBON NANOTUBE THIN FILM TRANSISTORS FOR BIOMEDICAL APPLICATIONS Vanessa Velasco August 5, 2010 The application of carbon nanotubes (CNTs) has captivated the curiosity of today's experts due to the escalating potential in the field of electronic detection of biomolecules. Their extreme environmental sensitivity and small size make them ideal candidates for future biosensing technologies. Recen...

متن کامل

Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes.

Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property, outstanding printability, and great potential for flexible electronics. Nonetheless, developing scalable and low-cost approaches for manufacturing fully printed high-performance single-wall carbon nanotube thin-film transistors remains a majo...

متن کامل

Symmetrical, Low-Power, and High-Speed 1-Bit Full Adder Cells Using 32nm Carbon Nanotube Field-effect Transistors Technology (TECHNICAL NOTE)

Carbon nanotube field-effect transistors (CNFETs) are a promising candidate to replace conventional metal oxide field-effect transistors (MOSFETs) in the time to come. They have considerable characteristics such as low power consumption and high switching speed. Full adder cell is the main part of the most digital systems as it is building block of subtracter, multiplier, compressor, and other ...

متن کامل

Carbon nanotube thin film transistors based on aerosol methods.

We demonstrate a fabrication method for high-performance field-effect transistors (FETs) based on dry-processed random single-walled carbon nanotube networks (CNTNs) deposited at room temperature. This method is an advantageous alternative to solution-processed and direct CVD grown CNTN FETs, which allows using various substrate materials, including heat-intolerant plastic substrates, and enabl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanotechnology

دوره 24 40  شماره 

صفحات  -

تاریخ انتشار 2013